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Abstract
An inequality for dynamic critical exponents is proved for relaxation
processes of arbitrary magnetic systems. This is a dynamical extension
of Rushbrooke’s inequality. It can be applied to any continuous-transition
systems with various dynamics. The relation is demonstrated on the result
of nonequilibrium relaxation analysis of fluctuations applied to the three-
dimensional ferromagnetic Ising model.

PACS numbers: 75.40.Gb, 05.70.Jk, 02.70.Tt

1. Introduction

Several decades ago, Rushbrooke proved an inequality for critical exponents in Ising systems
using a thermodynamic identity [1],

α + 2β + γ � 2. (1.1)

It is general and extended to a wide variety of physical systems. This is called Rushbrooke’s
inequality. It is consistent with the scaling relation

α + 2β + γ = 2 (1.2)

which is derived from the scaling hypothesis for the free energy density,

f (ε,H) = L(−2+α)/νg(L1/νε, LyH) (1.3)

where ε ≡ (T − Tc)/Tc is the reduced temperature and H is the external field. While
equation (1.2) is not rigorous, together with the exact inequality (1.1) it has been playing an
important role in statistical physics of phase transitions.

The nonequilibrium relaxation (NER) method is an efficient numerical technique for
analysing equilibrium phase transitions [2–5]. One observes a relaxation of order parameter
in thermalization process from a completely ordered state. It indicates the critical point when it
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shows a power-law decay instead of the exponential decay or a decay to a spontaneous ordering
corresponding to the paramagnetic (PM) and ferromagnetic (FM) phases, respectively. The
relaxation power λm is relating to conventional critical exponents including the dynamic
exponent z as

λm = β

zν
. (1.4)

If one observes relaxations of other quantities relating to fluctuations such as susceptibility,
specific heat and so on, each exponent can be evaluated individually [3–5]. The method is
based on the dynamic scaling hypothesis [6], in which the observation time t plays the role
of a scaling field like the system size L in the finite size scaling analysis. This analysis has
been used successfully to study various problems including frustrated and/or random systems
[7–9]. In the NER analysis, the equilibration step is not necessary. Simulation is made only
up to steps when the asymptotic behaviour indicates the equilibrium state. This advantage
becomes more effective for slow-relaxation systems.

Although, the NER approach for the estimations of critical exponents is successful in
many systems, only phenomenological arguments support it theoretically. Thus, exact theories
concerning this field are desirable to check the validity of the method. In the present paper,
first we recall that the inequality used in Rushbrooke’s proof is equivalent to Schwartz’s
inequality. In section 3, we extend it to the dynamical quantities, and derive a dynamical
version of Rushbrooke’s inequality for the relaxation exponents appeared in the NER analysis.
The inequality is demonstrated for an NER simulation on the three-dimensional FM Ising
model in section 4. Using this simulation, we discuss the difference of convergence speeds to
asymptotic behaviour among NER functions. The last section is devoted to remarks.

2. Rushbrooke’s inequality

Let us recall the original proof by Rushbrooke [1]. We treat arbitrary spin systems under the
external field H. The starting point is the thermodynamic identity,

CH − Cm = T

(
∂m

∂T

)2

H

/ (
∂m

∂H

)
T

(2.1)

where m is the per-site magnetization and CH and Cm denote the specific heat under constant
H and constant m, respectively. It is derived from the exact differential of entropy with respect
to the temperature and the external field,

dS =
(

∂S

∂T

)
H

dT +

(
∂S

∂H

)
T

dH. (2.2)

Since the specific heat is non-negative, equation (2.1) yields the inequality

CH

(
∂m

∂H

)
T

� T

(
∂m

∂T

)2

H

. (2.3)

If the system undergoes a continuous phase transition at a definite transition temperature Tc

and the spontaneous ordering (magnetization) appears below it, one can consider static critical
exponents defined by

CH ∼ (−ε)−α (2.4a)(
∂m

∂T

)
H

∼ (−ε)β−1 (2.4b)
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∂m

∂H

)
T

∼ (−ε)−γ . (2.4c)

Then, equation (2.3) reveals Rushbrooke’s inequality (1.1).
It is noted that equation (2.3) is nothing but Schwartz’s inequality. Let us denote the

equilibrium correlation function for quantities A and B,

X(A,B) ≡ 〈AB〉 − 〈A〉〈B〉 (2.5)

where 〈· · ·〉 represents the thermal equilibrium average. Since the positivity X(A,A) � 0
holds for any A, Schwartz’s inequality is derived,

X(A,A) X(B,B) � X(A,B)2. (2.6)

Setting A = m and B = e, where e is the per-site energy, one obtains an inequality

[〈m2〉 − 〈m〉2][〈e2〉 − 〈e〉2] � [〈me〉 − 〈m〉〈e〉]2 (2.7)

which is equivalent to equation (2.3).

3. Dynamical Rushbrooke’s inequality

We consider a nonequilibrium process starting from a fixed state, in which the dynamical
average at time t is denoted by 〈· · ·〉t . The correlation function in this dynamical process is
defined by

Xt(A,B) ≡ 〈AB〉t − 〈A〉t 〈B〉t . (3.1)

Since the positivity Xt(A,A) � 0 is satisfied for any A and any t, Schwartz’s inequality,

Xt(A,A) Xt(B,B) � Xt(A,B)2 (3.2)

holds. Setting A = m and B = e, one obtains an inequality[〈m2〉t − 〈m〉2
t

][〈e2〉t − 〈e〉2
t

]
� [〈me〉t − 〈m〉t 〈e〉t ]2 (3.3)

for every t. This is a dynamical extension of the inequalities (2.3) or (2.7).
While equation (3.3) is valid for any dynamical process, it is interesting to apply it to the

process starting from a completely ordered state—the all-aligned state in the FM case—at time
t = 0. Note that the magnetization 〈m〉t is non-zero in t > 0 since the spin-flop symmetry has
broken at the initial state. In the NER analysis of fluctuations [3–5], the following dynamical
functions are useful to estimate critical exponents,

fmm(t) ≡ N

( 〈m2〉t
〈m〉2

t

− 1

)
(3.4a)

fme(t) ≡ N

( 〈me〉t
〈m〉t 〈e〉t − 1

)
(3.4b)

fee(t) ≡ N

( 〈e2〉t
〈e〉2

t

− 1

)
. (3.4c)

At the critical point, they are supposed to be diverging with t according to power laws as

fmm(t) ∼ tλmm (3.5a)

fme(t) ∼ tλme (3.5b)

fee(t) ∼ tλee . (3.5c)
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Figure 1. Calculated R(t) for the FM Ising model in three dimensions. Double-log scale is used.

Assuming the dynamic scaling hypothesis, one obtains the relations of the above dynamical
exponents with conventional ones

λmm = γ

zν
+

2β

zν
= d

z
(3.6a)

λme = 1

zν
(3.6b)

λee = α

zν
. (3.6c)

Together with the exponent for magnetization (1.4), one can evaluate each exponent
individually.

Using equation (3.3), one obtains an inequality for NER functions,

R(t) ≡ fmm(t)fee(t)

fme(t)2
� 1 (3.7)

which is the dynamical extension of equation (2.3) in this NER process. Assuming the
power-law divergence (3.5), one obtains the dynamical Rushbrooke’s inequality,

λmm + λee � 2λme. (3.8)

If one assumes the dynamic scaling hypothesis and equations (3.6), the inequality (3.8)
becomes identical with the original Rushbrooke’s one (1.1).

4. Numerical simulation

It is valuable to see the behaviour of R(t) defined in equation (3.7) in an NER analysis of
fluctuations. This provides the validity of numerical calculations as well as the details of
asymptotic behaviour of NER functions in equation (3.5). In figure 1, we plot R(t) for the FM
Ising model on the simple cubic lattice at the transition temperature Tc = 4.511 5258 (Kc =
0.221 6545) obtained previously by the NER method [4, 5, 10]. The Metropolis Monte Carlo
simulations are performed on the 3812 ∗ 380 lattice with skew boundary condition up to 104

MCS. About 104 samples are used for averaging. It is shown that R(t) is always greater than
unity, which is consistent with equation (3.7).
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In the plot in figure 1, the slope of the curve which indicates the power of relaxation seems
non-zero and positive up to the observed MCS. If this remains true in the asymptotic regime,
λmm + λee − 2λme has a non-zero value. Because of equations (3.6), it reveals the breaking
of scaling relation (1.2). However, we consider another explanation for this observation. In
[4], the FM Ising model on the cubic lattice was analysed and we obtained the result: z =
2.055(10), ν = 0.625(5), β = 0.325(5) and α = 0.14(2). The calculations of fluctuations
were made on a 150 × 150 cubic lattice with skew boundary condition at the estimated Tc

up to 5000 MCS. About 106 samples were used for averaging. As pointed out in that paper,
the estimated values of z, ν and β are almost consistent with those obtained so far, while that
of α is a little larger. It is natural to consider that the observation time is still short, and the
asymptotic regime has not been reached. In fact, the curve shows a little convexity in figure 1,
which indicates that the power would be decreasing in a longer time regime. Since only the
estimated α gives a remarkable deviation, the convergence speed to the asymptotic regime,
which is related to the corrections to scaling, is different among NER functions. It is expected
that the convergence speed of the function fee(t) is much slower than those of others.

5. Remarks

We derive an inequality (3.8) for dynamic critical exponents appearing in the NER analysis
of fluctuations. This is a dynamical extension of Rushbrooke’s inequality (1.1). The
basic inequality (3.7) is demonstrated on the result of nonequilibrium relaxation analysis
of fluctuations applied to the three-dimensional ferromagnetic Ising model. It is discussed that
the convergence speeds to asymptotic behaviour are different among NER functions. That of
the energy fluctuation fee(t) is much slower than the others. At present, we have no idea how
to explain this phenomenon. Further investigations would be necessary in the future.
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